Every child a leader - Every chance taken - Every day counts

The national curriculum for mathematics aims to ensure that all pupils:
 rapidly and accurately.

Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language

 should consolidate their understanding, including through additional practice, before moving on.

Information and communication technology (ICT)
 problems, if written and mental arithmetic are secure. Teachers should use their judgement about when ICT tools should be used.

Spoken language

 secure foundations by using discussion to probe and remedy their misconceptions.

National Curriculum Knowledge Pupils

should...

KS1

- Develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools].
- Recognise, describe, draw, compare and sort different shapes and use the related vocabulary.
- Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money.
- By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.
- Pupils should read and spell mathematical vocabulary, at a level consisten with their increasing word reading and spelling knowledge at key stage 1.

Lower KS2

- Become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value.
- Develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers.
- Develop their ability to solve a range of problems, including with simple fractions and decimal place value
- Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number
- By the end of year 4, pupils should have memorised their multiplication tables up to and including the $\mathbf{1 2}$ multiplication table and show precision and fluency in their work.
- Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Upper KS2
Extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio.
Develop their ability to solve a wider range of problems, includin increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation.
Be introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number.
Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them.

- By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages.

Term	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Value	Resilience	Integrity	Democracy	Creativity	Gratitude	Diversity
Key Events	Black History Month (October) Mental Health Day Harvest Festival Show Racism the Red Card	Remembrance Day Anti-bullying Week World Kindness Day	Safer Internet Day	World Book Day	Coronation of King Charles	Sports Week Science week at JEA

Place value: Count	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number Count numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2,3, and 5 from 0 , and in tens from any number, forward and backward	count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number	count in multiples of 6, 7, 9, 25 and 1000 count backwards through zero to include negative numbers	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
	Autumn 1 Spring 1 Spring 2 Summer 2	Autumn 1	Autumn 1 Autumn 2	Autumn 1 Autumn 2	Autumn 1 Summer 2	

Place value: Represent	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- identify and represent numbers using objects and pictorial representations - read and write numbers to 100 in numerals - read and write numbers from 1 to 20 in numerals and words	read and write numbers to at least 100 in numerals and in words identify, represent and estimate numbers using different representations, including the number line	- identify, represent and estimate numbers using different representations read and write numbers up to 1000 in numerals and in words	identify, represent and estimate numbers using different representations read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	read, write, (order and compare) numbers to at least 1000000 and determine the value of each digit read Roman numerals to 1000 (M) and recognise years written in Roman numerals	read, write, (order and compare) numbers up to 10 000000 and determine the value of each digit
	Autumn 1 Spring 1 Spring 2 Summer 2	Autumn 1				

Place value: Use and compare	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	given a number, identify one more and one less	recognise the place value of each digit in a two-digit number (tens, ones) compare and order numbers from 0 up to 100; use <, > and = signs	recognise the place value of each digit in a threedigit number (hundreds, tens, ones) compare and order numbers up to 1000	find 1000 more or less than a given number recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) order and compare numbers beyond 1000	(read, write) order and compare numbers to at least 1000000 and determine the value of each digit	(read, write), order and compare numbers up to 10 000000 and determine the value of each digit
	Autumn 1 Spring 1 Spring 2 Summer 2	Autumn 1				

Place value: Problems/Rounding	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems using concrete objects and pictorial representations	use place value and number facts to solve problems	solve number problems and practical problems involving these ideas	round any number to the nearest 10,100 or 1000 solve number and practical problems that involve all of the above and with increasingly large positive numbers	interpret negative numbers in context round any number up to 1 000000 to the nearest 10 , $100,1000,10000$ and 100 000 solve number problems and practical problems that involve all of the above	round any whole number to a required degree of accuracy use negative numbers in context, and calculate intervals across zero solve number and practical problems that involve all of the above
	Autu	Autumn 1				

Addition \& subtraction: Calculations	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	add and subtract one-digit and two- digit numbers to 20, including zero	- add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one- digit numbers	- add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens $>$ a three-digit number and hundreds - add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations
	Autumn 2 Spring 2	Autumn 2	Autumn 2	Autumn 2	Autumn 1	Autumn 2

Addition \& subtraction: Problems	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ $\square-9$	- solve problems with addition and subtraction: > using concrete objects and pictorial representations, including those involving numbers, quantities and measures > applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi- step problems in contexts, deciding which operations and methods to use and why - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	solve addition and subtraction multi- step problems in contexts, deciding which operations and methods to use and why
	Autumn 2 Spring 2	Autumn 2	Autumn 2	Autumn 2	Autumn 1	Autumn 2

Multiplication \& division: Recall/Use	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed ${ }^{3}$)	identify common factors, common multiples and prime numbers use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy
		Spring 2	Autumn 2 Spring 1	Autumn 1 Spring 1	Autumn 2	Autumn 2

Multiplication \& division: Calculations	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals ($=$) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two- digit numbers times one-digit numbers, using mental and progressing to formal written methods	multiply two-digit and three-digit numbers by a one- digit number using formal written layout	multiply numbers up to 4 digits by a one- or two- digit number using a formal written method, including long multiplication for twodigit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbers
		Spring 2	Autumn 2 Spring 1	Spring 1	Autumn 2 Spring 1	Autumn 2

Multiplication \& division: Problems	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving addition, subtraction, multiplication and division
	Summer 1	Spring 2	Spring 1	Spring 1	Autumn 2 Spring 1	Autumn 2

Multiplication \& division: Combined	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
					solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	use their knowledge of the order of operations to carry out calculations involving the four operations
					Spring 1	Autumn 2

Fractions: Recognise and write	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	- recognise, find, name and write fractions of $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity	count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing onedigit numbers or quantities by 10 recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators	count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.	- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $2 / 5+4 / 5=6 / 5=1$ and $1 / 5$]	- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+4 / 5=6 / 5=1$ and $1 / 5$] To solve varied problems by giving the answer as a mixed number or improper fraction.
	Summer 2	Summer 1	Spring 2	Spring 2 Summer 1	Autumn 2	Autumn 2

Fractions: Compare	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		Recognise the equivalence of $2 / 4$ and $1 / 2$	recognise and show, using diagrams, equivalent fractions with small denominators compare and order unit fractions, and fractions with the same denominators	recognise and show, using diagrams, families of common equivalent fractions	compare and order fractions whose denominators are all multiples of the same number	use common factors to simplify fractions; use common multiples to express fractions in the same denomination compare and order fractions, including fractions > 1
		Summer 1	Spring 2	Spring 2	Autumn 2	Autumn 2

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Fractions: Calculations		write simple fractions such as $1 / 2$ of $6=3$	add and subtract fractions with the same denominator within one whole e.g. $5 / 7+1 / 7=6 / 7$	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and denominators that are multiples of the same number multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form divide proper fractions by whole numbers
		Summer 1	Summer 1	Spring 2	Autumn 2 Spring 1	Autumn 2 Autumn 2

Fractions: Solve problems	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- solve problems that involve adding and subtracting fractions	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving increasingly harder fractions to calculate quantities, and fractions to multiply/divide quantities, including nonunit fractions where the answer is a whole number	solve problems involving increasingly harder fractions to calculate quantities, and fractions to multiply/divide quantities, including nonunit fractions where the answer is greater than one.
			Spring 2 Summer 1	Spring 2	Spring 2	Spring 2

Decimals: Recognise, write, compare	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				- recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$ round decimals with one decimal place to the nearest whole number compare numbers with the same number of decimal places up to two decimal places	read and write decimal numbers as fractions e.g. $0.71=71 / 100$ recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents round decimals with two decimal places to the nearest whole number and to one decimal place read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places
				Spring 2 Summer 1	Spring 2 Summer 2	Spring 2

Fractions, decimals and percentages	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				solve simple measure and money problems involving fractions and decimals to two decimal places	recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominato 100 , and as a decimal solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	- associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8] recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
				Spring 2 Spring 2 Summer 1	Spring 2	Spring 2 Spring 2

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Ratio and proportion						solve problems involving the relative sizes of two values can be found by using integer multiplication and division facts solve problems involving the calculation/use of pemparison solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using knowledge of fractions and multiples
						Spring 1

Algebra	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ $\square-9$	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems	solve problems, including missing number problems	solve problems, including missing number problems	solve problems, including missing number problems	use simple formulae generate and describe linear number sequences express missing number problems algebraically find pairs of numbers that satisfy an equation with two unknowns enumerate possibilities of combinations of two variables
			Autumn 1 Autumn 2	Autumn 1 Autumn 2	Autumn 1 Autumn 2	Spring 2

Using measures	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	- compare, describe and solve practical problems for: $>$ lengths and heights > mass/weight > capacity and volume $>$ time - measure and begin to record the following: $>$ lengths and heights $>$ mass/weight > capacity and volume $>$ time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass $(\mathrm{kg} / \mathrm{g})$; temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using >, < and =	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l/ml)	Convert between different units of measure [for example, kilometre to metre; hour to minute] estimate, compare and calculate different measures	convert between different units of metric measure understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling	solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 d.p. where appropriate use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 d.p. convert between miles and kilometres
	Spring 2 Summer 2	Spring 2	Summer 1	Spring 2 Summer 2	Spring 2 Summer 2	Autumn 2

Money	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	add and subtract amounts of money to give change, using both $£$ and p in practical contexts	estimate, compare and calculate different measures, including money in pounds and pence	use all four operations to solve problems involving measure [for example, money]	use all four operations to solve problems involving measure [for example, money]
	Summer 2	Spring 1	Autumn 2	Summer 1	Summer 2	Autumn 1

Time	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] recognise and use language relating to dates, including days of the week, weeks, months and years tell the time to the hour and half past the hour and draw the hands on a clock face to show these times	compare and sequence intervals of time tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, a.m./p.m., morning, afternoon, noon and midnight know the number of seconds in a minute and the number of days in each month, year and leap year compare durations of events [for example to calculate the time taken by particular events or tasks]	read, write and convert time between analogue and digital 12 - and 24 hour clocks solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	solve problems involving converting between units of time	use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa
	Summer 2	Summer 2	Spring 1	Spring 2	Summer 2	Autumn 2

Perimeter, area, volume	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
			- measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes by counting squares	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres calculate and compare the area of rectangles (including squares) and including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$ and estimate the area of irregular shapes estimate volume [for example, using blocks to build cuboids] and capacity [for example, using water]	recognise that shapes with the same areas can have different perimeters and vice versa recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres (m^{3}), and extending to other units
			Spring 2	Autumn 1	Spring 2 Summer 2	Spring 2

2-D shapes	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	recognise and name common 2-D shapes [for example, rectangles (including squares), circles and triangles]	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] compare and sort common 2-D shapes and everyday objects	- draw 2-D shapes	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes identify lines of symmetry in 2-D shapes presented in different orientations	distinguish between regular and irregular polygons based on reasoning about equal sides and angles. use the properties of rectangles to deduce related facts and find missing lengths and angles	draw 2-D shapes using given dimensions and angles compare and classify geometric shapes based on their properties and sizes illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
	Autumn 2	Autumn 2	Autumn 1	Summer 2	Summer 1	Summer 1

3-D shapes	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]	- recognise and name common 3-D shapes [for example, cuboids (including cubes), pyramids and spheres] compare and sort common 3-D shapes and everyday objects	make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them		- identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets
	Autumn 2	Autumn 2	Autumn 1		Summer 1	Summer 1

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Angles and lines			recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines	identify acute and obtuse angles and compare and order angles up to two right angles by size identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry	- know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees identify: $>$ angles at a point and one whole turn (total 360°) $>$ angles at a point on a straight line and ${ }^{1} a$ turn (total 180°) $>$ other multiples of 90°	find unknown angles in any triangles, quadrilaterals, and regular polygons recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
			Summer 2	Summer 2	Summer 1	Summer 1

Position and direction	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	describe position, direction and movement, including whole, half, quarter and three-quarter turns	order and arrange combinations of mathematical objects in patterns and sequences use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anti- clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to complete a given polygon	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes
	Summer 2	Summer 2		Summer 2	Summer 1	Summer 2

Present and interpret data	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	- interpret and construct pie charts and line graphs and use these to solve problems
		Summer 2	Summer 2	Summer 1	Spring 2	Spring 2

Solve statistical problems	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totalling and comparing categorical data	solve one-step and twostep questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average
		Summer 2	Summer 2	Summer 1	Spring 2	Spring 2

RECEPTION

NUMBER

Comparison

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Link numerals and amounts: forexample, showing the right number of objects to match the numeral, up to 5 . Experiment with their own symbols and marks as well asnumerals.	- Count objects, actions andsounds. - Compare numbers.	Compares two small groups of up to five objects, saying when there are the same number of objects in each group, e.g. You'vegot two, I've got two. Same!	- Uses number names and symbols when comparing numbers, showing interest inlarge numbers - Estimates of numbers of things,showing understanding of relative size
Autumn 3, Autumn 5 Spring 1 Summer 2	Autumn 1, Autumn 5 Spring 1, Spring 3, Spring 4, Spring 5 Summer 1, Summer 6	Autumn 2, Autumn 5	Spring 1, Spring 3, Spring 5 Summer 1, Summer 4

Counting

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Recite numbers past 5. Say one number for each item inorder: 1, 2, 3, 4, 5.	Count beyond ten.	May enjoy counting verbally asfar as they can go Points or touches (tags) each item, saying one number for each item, using the stable orderof $1,2,3,4,5$. Uses some number names andnumber language within play, and may show fascination withlarge numbers Begin to recognise numerals 0 to10	Enjoys reciting numbers from Oto 10 (and beyond) and back from 10 to 0 Increasingly confident at puttingnumerals in order 0 to 10 (ordinality)
Autumn 3, Autumn 5 Spring 3, Spring 5 Summer 1	Summer 1, Summer 6	Autumn 3, Autumn 5 Spring 1, Spring 5 Summer 1	Spring 5 Summer 1

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Develop fast recognition of up to3 objects, without having to count them individually ('subitising'). Know that the last number reached when counting a small set of objects tells you how manythere are in total ('cardinal principle'). Show 'finger numbers' up to 5 .	- Subitise - Link the number symbol (numeral) with its cardinalnumber value.	- Subitises one, two and threeobjects (without counting) - Counts up to five items, recognising that the last numbersaid represents the total countedso far (cardinal principle) - Links numerals with amounts upto 5 and maybe beyond Explores using a range of theirown marks and signs to whichthey ascribe mathematical meanings	- Engages in subitising numbers tofour and maybe five - Counts out up to 10 objects froma larger group - Matches the numeral with agroup of items to show howmany there are (up to 10)
Autumn 3, Autumn 5 Spring 1	Autumn 3, Autumn 5 Spring 1, Spring 3, Spring 5 Summer 6	Autumn 3, Autumn 5 Spring 1 Summer 2	Autumn 5 Spring 1, Spring 3, Spring 5 Summer 4

Composition

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Solve real world mathematical problems with numbers up to 5 .	Understand the 'one more than/one less than' relationshipbetween consecutive numbers. Explore the composition ofnumbers to 10. Automatically recall number bonds for numbers 0-5 and someto 10.	- Through play and exploration, beginning to learn that numbersare made up (composed) of smaller numbers - Beginning to use understanding of number to solve practical problems in play and meaningfulactivities Beginning to recognise that eachcounting number is one more than the one before - Separates a group of three or four objects in different ways, beginning to recognise that thetotal is still the same	Shows awareness that numbersare made up (composed) of smaller numbers, exploring partitioning in different ways with a wide range of objects Begins to conceptually subitise larger numbers by subitising smaller groups within the number, e.g. sees six raisins on aplate as three and three In practical activities, adds one and subtracts one with numbersto 10 Begins to explore and work out mathematical problems, using signs and strategies of their own choice, including (when appropriate) standard numerals,tallies and " + " or "-"
Autumn 5 Spring 1	Autumn 3, Autumn 5 Spring 1, Spring 3, Spring 5 Summer 2, Summer 4, Summer 6	Autumn 3, Autumn 5 Spring 1	Autumn 5 Spring 1, Spring 3, Spring 5 Summer 2, Summer 4, Summer 6

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Compare quantities using language: 'more than', 'fewerthan', Understand position through words alone - for example, "The bag is under the table," - with no pointing. Describe a familiar route. - Discuss routes and locations, using words like 'in front of' and'behind'.	Select, rotate and manipulateshapes in order to develop spatial reasoning skills.	- Responds to and uses languageof position and direction - Predicts, moves and rotates objects to fit the space or createthe shape they would like	Uses spatial language, includingfollowing and giving directions, using relative terms and describing what they see from different viewpoints Investigates turning and flippingobjects in order to make shapesfit and create models; predictingand visualising how they will look (spatial reasoning) May enjoy making simple mapsof familiar and imaginative environments, with landmarks
Autumn 2, Autumn 4 Spring 3 Summer 5	Spring 6 Summer 3	Autumn 4 Spring 6 Summer 3	Spring 6 Summer 3, Summer 5

Shape

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Talk about and explore 2D and 3D shapes (for example, circles,rectangles, triangles and cuboids) using informal and mathematical language: 'sides', 'corners', 'straight', 'flat', 'round'. Select shapes appropriately: flatsurfaces for building, a triangular prisms for a roof, etc. Combine shapes to make new ones - an arch, a bigger triangle,etc.	Compose and decompose shapes so that children recognisea shape can have other shapes within it, just as numbers can.	- Chooses items based on their shape which are appropriate forthe child's purpose - Responds to both informal language and common shapenames - Shows awareness of shape similarities and differencesbetween objects - Enjoys partitioning and combining shapes to make newshapes with 2D and 3D shapes - Attempts to create arches and enclosures when building, usingtrial and improvement to selectblocks	- Uses informal language and analogies, (e.g. heartshaped and hand-shaped leaves), as wellas mathematical terms to describe shapes. Enjoys composing and decomposing shapes, learningwhich shapes combine to makeother shapes Uses own ideas to make modelsof increasing complexity, selecting blocks needed, solving problems and visualising what they will build.
Autumn 4, Autumn 6 Spring 6	Autumn 6 Spring 6 Summer 3	Autumn 6 Spring 6 Summer 3	Autumn 4 Spring 6 Summer 3, Summer 5

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Talk about and identify the patterns around them. For example: stripes on clothes, designs on rugs and wallpaper.Use informal language like 'pointy', 'spotty', 'blobs', etc. Extend and create ABAB patterns - stick, leaf, stick, leaf. Notice and correct an error in arepeating pattern.	Continue, copy and createrepeating patterns.	- Creates their own spatialpatterns showing some organisation or regularity - Explores and adds to simple linear patterns of two or threerepeating items, e.g. stick, leaf(AB) or stick, leaf, stone (ABC) - Joins in with simple patterns insounds, objects, games and stories dance and movement, predicting what comes next	- Spots patterns in the environment, beginning toidentify the pattern "rule" - Chooses familiar objects to create and recreate repeating patterns beyond $A B$ patterns andbegins to identify the unit of repeat
Autumn 2 Spring 6	Autumn 2 Spring 6 Summer 5	Autumn 2	Autumn 1 Spring 6 Summer 5

Measure

Development matters		Birth to 5 matters	
3 and 4 year olds	Reception	Range 5	Range 6
Make comparisons between objects relating to size, length, weight and capacity. Begin to describe a sequence ofevents, real or fictional, using words such as 'first', 'then...'	- Compare length, weight andcapacity.	- In meaningful contexts, finds thelonger or shorter, heavier or lighter and more/less full of twoitems - Recalls a sequence of events ineveryday life and stories.	- Enjoys tackling problems involving prediction and discussion of comparisons of length, weight or capacity, paying attention to fairness andaccuracy - Becomes familiar with measuring tools in everydayexperiences and play - Is increasingly able to order andsequence events using everydaylanguage related to time - Beginning to experience measuring time with timers andcalendars
Autumn 2 Spring 2, Spring 4 Summer 5	Spring 2, Spring 4 Summer 6	Autumn 2, Autumn 6 Spring 4	Autumn 6 Spring 2, Spring 4 Summer 6

